为

Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]

Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08

Rev 1.10

«Civil»

<17/08/2022>

CONTINUOUS INTERNAL EVALUATION- 3

Dept: CV Sem / Div: 4th Sub: Analysis of Determinate Structures S Code: 18CV42
Date: 30/08/2022 Time: 3:00-4:30 pm Max Marks: 50
Elective: N

Note: Answer any 2 full questions, choosing one full question from each part.

Questions	Marks	RBT	COs
PART A			
a Differentiate between Statically determinate structures and statically	7	L2	CO1
indeterminate structures.	8	L2	CO1
b Discuss various structures forms with examples.	10	L3	COI
c Calculate static indeterminacy for following structures. Hinge Hinge (iii) Hinge (iv)			
OR 2 a Differentiate between linear analysis and non linear analysis structures.	of 7	L2	COI
b Explain the terms degree of freedom, influence line diagrapplications of influence diagrams and absolute maximum bend moment.	am, 8 ling	L2	COI
c Derive the expression for maximum reactions and shear force for simply supported beam due to uniformly distributed loads. (Use longer than span of beam)	or a 10 JDL	L3	CO1
PART B			
3 a A uniformly distributed load of intensity 2kN/m and 5m long cross simply supported beam of 20m span from left to right. Calculate		L3	CO1,2
i. Maximum shear force and bending moment at a section 8m from left support.	133		
ii. Absolute maximum bending moment.	33 403	11/3/3/3	
bA train of four concentrated loads 40kN, 50kN, 60kN and 30kN 30kN load leading crosses a simply supported girder of 18m span. four loads are separated by a distance of 1.5m each. Determine maximum bending moment at 6m from left support and absorbed	The	L3	CO1,
			1.

Vivekananda College of Engineering & Technology, Puttur

[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®]

Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08

Rev 1.10

«Civil»

<17/08/2022>

CONTINUOUS INTERNAL EVALUATION- 3

	maximum bending moment anywhere in the girder.						
	OR						
4 a	A load of 150kN crosses a beam of 20m span. Find the values of maximum positive and negative shear force at a section 8m from the left support.	5	L3	CO1,2			
	The multiple point loads 100kN, 120kN, 80kN and 150kN with a spacing 2m crosses a girder of span 30m from left to right with 100kN load leading. Calculate reactions, maximum SF at a section 10m from left, maximum BM at a section 10m from left, absolute maximum SF and absolute max BM.		L3	CO1,2			

Prepared by: Shishirakrishna S

HOD